

Industrial Challenge

Problem:
- Downtime of production equipment → Very expensive!
- Motivates demand for:
 - Fault detection and Isolation (FDI) → Similarities to SysID
 - Fault tolerant control
 - Predictive maintenance

Mechatronics:
- Closed loop
- Multivariate

Fault Diagnosis via Residual Generation

Goal: Design \(Q := [q_y, q_u] \) s.t.
- setpoint decoupling \((G_{r,r} = 0) \)
- fault sensitivity \((G_{f,f} \neq 0) \)
- disturbance attenuation \((G_{d,d} \approx 0) \)

Specifically, maximize performance measure \(\beta \) through

\[
\beta = \max \left\{ \|G_{r,f}\|_\infty = \|G_{d,d}\|_\infty \leq \gamma \right\}
\]

- Often claimed that feedback controllers do not affect FDI system design, see, e.g., [2], [3]
- Hence, the open-loop problem (\(- \)) equals the closed-loop problem? → Recall closed-loop identification problem?

Closed-loop Noise perspective

For identification, caution is required! E.g.,
- Spectral analysis \(\hat{G}_d(e^{j\omega}) = \frac{\Phi_{u1}(\omega)}{\Phi_{u1}(\omega)} = \frac{u_d(e^{j\omega}r_{12}(\omega)) - C \Delta e^{j\omega}r_{12}(\omega)}{\Phi_{e(e^{j\omega})}} \Phi_{u1}(\omega) \)
 - can result in bias due to correlation \(v \) and \(u \)
 - \(\rightarrow \) SysID solutions known [4] [5]

- Knowing whether controllers are in the loop is crucial!

Take home message 1: For FDI system design, indeed,
- residual generation problem is invariant to controller \(C \)
- **Theorem:** open-loop problem (\(- \)) with \(G_{r,r} = 0 \) is equivalent to closed-loop problem with \(G_{d,d} = 0 \).
 - I.e., the same filter \(Q \) results, see [6] for details, confirming the implicit statements in [2], [3]

Closed-loop MIMO perspective

In addition, from a MIMO perspective, caution is required!
- Naive indirect identification approach, e.g., \(\hat{G}_d(e^{j\omega}) = \frac{u_d(e^{j\omega})}{\Delta e^{j\omega}} \) gives an estimate of \(G_{r,r} := G_{r,r} - \sum_{i=1}^{2} \epsilon_{r,i} G_{r,i} e^{j\omega} \) and results in bias due to cross-coupling → Matrix product for bias-free full plant, i.e., \(\hat{G}_d(e^{j\omega}) = \hat{G}_d S(e^{j\omega}) S(e^{j\omega})^{-1} \)
- Bias in estimation propagates to FDI design, severely compromising resulting filter!

Take home message 2:
- Two design options:
 - Identify complete MIMO plant (if possible) and MIMO \(Q \) → gives \(C \) invariance
 - Identify equivalent plant to design \(Q \) → depends on \(C \) (e.g., if limited \(i/o \))

Discussion & Future Work

- Close link between SysID and fault identification → What can we learn?
- System reconfiguration, e.g., actuator force redistribution to counteract fault
- Predictive capability

References